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Abstract

We extend the classical Avez–Seifert theorem to trajectories of charged test particles with fixed
charge-to-mass ratio. In particular, given two eventsx0 andx1, with x1 in the chronological future
of x0, we find an intervalI =] − R,R[ such that for anyq/m ∈ I there is a timelike connecting
solution of the Lorentz force equation. Moreover, under the assumption that there is no null geodesic
connectingx0 andx1, we prove that to any value of|q/m| there correspond at least two connecting
timelike solutions which coincide only if they are geodesics.
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1. Introduction

LetΛ be a Lorentzian manifold endowed with the metricg having signature(+− − −),
and consider a point particle of rest massm and electric chargeq, moving in the electro-
magnetic fieldF .

The equation of motion is the so calledLorentz force equation(cf. [5])

Ds

(
dx

ds

)
= q

mc2
F̂ (x)

[
dx

ds

]
, (1)
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wherex = x(s) is the world line of the particle, dx/ds is its four-velocity,Ds(dx/ds) is the
covariant derivative of dx/ds alongx(s) associated to the Levi–Civita connection ofg, and
F̂ (x)[·] is the linear map onTxΛ metrically equivalent toF(x), that is

g(x)[v, F̂ (x)[w]] = F(x)[v,w]

for anyv,w ∈ TxΛ.
We state the following question: DoesEq. (1)have at least one timelike future-oriented

solution connecting two given eventsx0 andx1 with x1 in the chronological future ofx0,
for any charge-to-mass ratioq/m?

It is well known (see for instance[1]) that, if the manifoldΛ is globally hyperbolic, the
Avez–Seifert theorem gives a positive answer to the above question in the caseq = 0 (i.e.
for thegeodesic equation).

In this paper we prove that, for an exact electromagnetic field on a globally hyperbolic
manifoldΛ, the answer is positive for any ratioq/m in a suitable neighborhood of 0∈ R.

Our strategy is to derive the solutions to the Lorentz force equations as projections of
geodesics of a higher dimensional manifold. In this way we are able to use the techniques
already developed for the geodesic equation.

This approach, has been already used for studying the Lorentz force equation in General
Relativity (see for instance[4]). However, a result a la Avez and Seifert for the Lorentz
force equation was still lacking.

In the preprint[2] it was proved that in a globally hyperbolic space–timeEq. (1)admits
a connecting solution with a charge-to-mass ratio different from zero. That ratio, however
was not fixed since the beginning.

So assume thatF is an exact two-form and letω be a potential one-form forF . Let us
consider a trivial bundleP = Λ × R, π : P → Λ, with the structure groupT1 : b ∈ T1,
p = (x, y), p′ = pb = (x, y + b), andω̃ the connection one-form onP :

ω̃ = i
(
dy + e

h̄c
ω
)
.

Herey is a dimensionless coordinate on the fibre,−e (e > 0) is the electron charge and
h̄ = h/2π, with h the Planck constant. Henceforth we will denote byω̄ andF̄ , respectively
the one-form(e/h̄c)ω and the two-form(e/h̄c)F . Let us endowP with the Kaluza–Klein
metric

gkk = g + a2ω̃2, (2)

or equivalently, using the notationz for the points inP and the identificationz = (x, y) ∈
Λ × R

gkk(z)[w,w] = gkk(x, y)[(v, u), (v, u)] = g(x)[v, v] − a2(u + ω̄(x)[v])2

for everyw = (v, u) ∈ TxΛ × R. The positive constanta has the dimension of a length
and has been introduced for dimensional consistency of definition(2). In the compactified
five-dimensional Kaluza–Klein theory the fibre is isomorphic toS1 anda represents the
radius of the fifth dimension.
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Let us consider the Lagrangian onP

L = L(z,w) : P × TP → R, L(z,w) = 1
2g

kk(z)[w,w].

Fix two pointsp0 andp1 ∈ P . The geodesics onP , with respect to the Kaluza–Klein metric,
connecting the pointsp0 andp1 are the critical points of the action functional

S = S(z) =
∫ 1

0

1

2
gkk(z(λ))[ż(λ), ż(λ)] dλ,

defined on a suitable space of sufficiently regular curves onP , parameterized from 0 to 1,
with fixed extreme pointsp0 andp1. Hereż denotes the derivative ofz = z(λ) with respect
to λ.

Assume thatz(λ) = (x(λ), y(λ)) is a critical point forS. Since the LagrangianL is
independent ofy, the following quantitypz is conserved

pz = ∂L

∂ẏ
= −a2(ẏ + ω̄(x)[ẋ]).

Moreover taking variations only with respect to the variablex we obtain the following
equation forx = x(λ)

Dλẋ = pz
ˆ̄F(x)[ẋ]. (3)

From(3), it follows thatg(x)[ẋ, ẋ] is constant alongx. Assume thatx is non-spacelike (with
respect tog) and defineC ≥ 0 such that

g(x)[ẋ, ẋ] = C2.

Sincez is a geodesic, alsogkk(z)[ż, ż] is conserved and

gkk(z)[ż, ż] = C2 − p2
z

a2
. (4)

Thus the geodesicz onP is timelike iff

C2 >
p2
z

a2
.

Remark 1. Of course, ifz is timelike then alsox is timelike, and ifz is non-spacelike then
alsox is non-spacelike. Moreover, ifz is a null geodesic, thenC2 = p2

z/a
2 andx is timelike

iff pz �= 0.

Remark 2. Now assume thatx is timelike. The proper time forx is defined by

ds = C dλ,

hence if we parameterizex with respect to proper time, from(3), we get the following
equation forx = x(s)

Ds

(
dx

ds

)
= pz

C
ˆ̄F(x)

[
dx

ds

]
= pz

C

e

h̄c
F̂ (x)

[
dx

ds

]
.
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Therefore, a comparison with(1) allows us to conclude that, if we are able to find a
future-oriented null geodesic for the Kaluza–Klein metric, starting from a pointp0 =
(x0, y0), arriving to a pointp1 = (x1, y1) and having constantpz �= 0, then, recalling
Remark 1, we can state that there exists a future-oriented timelike solution to(1), connect-
ing x0 andx1 and having charge-to-mass ratio

q

m
= pz

C

ec

h̄
= ±aec

h̄
,

with the plus sign ifpz > 0 and the minus sign ifpz < 0.

2. Statement and proof of the main theorem

In this section we state and prove our main result. In the sequel we will make large use
of the notations of the book[3], which is our reference also for the necessary background
on causal techniques.

Let Tx0,x1 andNx0,x1 be the sets, respectively, of all theC1, future-pointing timelike
connecting curves and of all theC1, future-pointing non-spacelike connecting curves. With
connecting curvewe mean a mapx from an interval [a, b] ⊂ R to Λ such thatx(a) = x0
andx(b) = x1 and any other mapw such thatw = x ◦ λ with λ a C1 function from an
interval [c, d] to the interval [a, b], having positive derivative.

Define

R = sup
x∈Tx0,x1

(
c2
∫
x

ds

supw∈Nx0,x1
| ∫

w
ω − ∫

x
ω|

)
. (5)

Notice thatR does not depend on the gauge chosen, that is, it is invariant under the replace-
mentω → ω + η, whereη is an exact one-form.

We recall that a globally hyperbolic manifold is a Lorentzian manifold containing a
subset (a so calledCauchy surface) which is intersected by every inextendible non-spacelike
smooth curve precisely once.

Proposition 3. Let (Λ, g) be a time-oriented, globally hyperbolic, Lorentzian manifold,
let x0 be a point onΛ andx1 ∈ Λ a point in the chronological future ofx0. Then

R > 0.

Proof. Let γ be a connecting future-directed timelike geodesic whose length is

L = sup
x∈Nx0,x1

∫
ds.

For the Avez–Seifert theorem, such a geodesic exists. Choose a gauge such that
∫
γ
ω = 0,

and define

M = sup
x∈Nx0,x1

∣∣∣∣
∫
x

ω

∣∣∣∣ .
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We are going to prove thatM is finite. Let{xn}n∈N ⊂ Nx0,x1 be a sequence such that∣∣∣∣
∫
xn

ω

∣∣∣∣ → M.

Since(Λ, g) is globally hyperbolic, the setC(x0, x1) of continuous non-spacelike curves
connectingx0 andx1 is compact[3]. We recall that the topology ofC(x0, x1) is defined by
saying that a neighborhood ofη ∈ C(x0, x1) consists of all the curves inC(x0, x1) whose
points inΛ lie in a neighborhoodW of the points ofη ∈ Λ. We can extract a subsequence,
denoted again with{xn}, such thatxn converges to a continuous non-spacelike curvex on
Λ, connectingx0 andx1 in the topology onC(x0, x1). Sincex is compact we can cover it
with m charts(Uk, φk) of the form

φk : Uk → ∆4 ⊂ R
4 with ∆ =]0, b[, (6)

where the coordinates{xµk } are Gaussian normal coordinates

gµν dxµ dxν = (dx0
k)

2 − γijk(x
0
k, x

i
k)dxik dxjk, (7)

and∂0k is future-directed (the existence of a neighborhood ofp ∈ M having Gaussian
coordinates follows by Lemma 4.5.2 of[3]). Hereγijk is a positive definite metric on the
spacelike hypersurfaces of constantx0

k . Moreover we can assume thatx0 ∈ U1, x1 ∈ Um,
andUi ∩ Uk = ∅, for anyk �= i − 1, i, i + 1. Let us introduce inUk, the inverse ofγijk ,

γ
−1ij
k , and the functioñωi

k = γ
−1ij
k ωjk, whereωjk denote the components ofω in Uk. In Uk

we consider the continuous functionsω0k and
√
ω̃i
kγijkω̃

j

k. Sincex is compact, we can find
a neighborhoodW ⊂ ⋃

1≤k≤m Uk of x, and a constantC, such that for anyk, |ω0k| < C

and
√
ω̃i
kγijkω̃

j

k < C. Sincexn converges tox there is an integer numberN such that, for
n > N, xn ∈ W .

Moreover, for anyxn, n > N, the strong causality condition onΛ allows us to introduce
a partition{[λk−1, λk]}1≤k≤m, λ0 = 0 < λ1 < · · · < λm = 1, of the interval [0,1], such
thatxn([λk−1, λk]) ⊂ Uk ∩ W . Now we compute

∣∣∣∣
∫
xn

ω

∣∣∣∣ ≤
∫ 1

0
|ω(xn)[ẋn]|dλ =

m∑
k=1

∫ λk

λk−1

|ω(xn)[ẋn]|dλ

=
m∑
k=1

∫ λk

λk−1

|ω0kẋ
0
n + ωikẋ

i
n|dλ

=
m∑
k=1

∫ λk

λk−1

|ω0kẋ
0
n + ω̃i

kγijk ẋ
j
n|dλ.

Using the Schwarz inequality we have

|ω̃i
kγijk ẋ

j
n| ≤

√
(ω̃i

kγijkω̃
j

k)(ẋ
s
nγslkẋln) ≤ C

√
ẋinγijk ẋ

j
n ≤ Cẋ0

n, (8)
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where in the last step we have used the fact thatxn is non-spacelike and future-directed.
From(8) we get∣∣∣∣

∫
xn

ω

∣∣∣∣ ≤
m∑
k=1

∫ λk

λk−1

2Cẋ0
n dλ ≤ 2Cmb< +∞.

Passing to the limit onn, we conclude thatM is finite. Finally, recalling the definition of
R, we get

R ≥ c2L

M
> 0. �

Now we are ready to state our main result.

Theorem 4. Let (Λ, g) be a time-oriented Lorentzian manifold. Letω be a one-form(C2)
onΛ (an electromagnetic potential) andF = dω (the electromagnetic tensor field). Assume
that(Λ, g) is a globally hyperbolic manifold. Letx1 be an event in the chronological future
of x0 and letR be defined as in(5), then there exists at least one future-oriented timelike
solution to(1) connectingx0 andx1, for any charge-to-mass ratio satisfying∣∣∣ q

m

∣∣∣ < R. (9)

Before provingTheorem 4we need some lemmas. The first is the following result, about
the causal structure of the manifoldP , which is contained in[2]. We report the proof for
the reader convenience.

Lemma 5. The manifoldP = Λ×R endowed with the metric(2) is a time-oriented globally
hyperbolic Lorentzian manifold.

Proof. Let V be a timelike vector field onΛ giving a time orientation. Clearly the hori-
zontal lift of V , (V,−ω̄[V ]), gives a time-orientation toP (henceforth we will considerP
time-oriented by means of such a vector field).

Let us prove that ifz :]a, b[→ P (−∞ ≤ a < b ≤ +∞) is an inextendible smooth
future-pointing non-spacelike curve, thenx(λ) = π(z(λ)) is an inextendible smooth future-
pointing non-spacelike curve. By contradiction letobe a future endpoint forx corresponding
to s = b. We are going to prove thatz has a future endpointu, π(u) = o. Sincez is
non-spacelike we deduce that

a|ẏ + ω̄(x)[ẋ]| ≤
√
g(x)[ẋ, ẋ],

and, integrating fromc > a to d < b, we get

a

∫ d

c

|ẏ + ω̄(x)[ẋ]| dλ ≤
∫ d

c

√
g(x)[ẋ, ẋ] dλ. (10)

Now consider the Lorentzian distance functiond on Λ associated to the metricg. Since
Λ is globally hyperbolic andx is non-spacelike, the right-hand side of(10) is less than
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d(x(c), x(d)) < +∞. As x has future endpointo corresponding toλ = b, d(z(c), o) <
+∞. So there exists the limit asd → b− of the right-hand side of(10). Therefore the
left-hand side of(10) has finite limit asd → b−. Now consider the term

∫ d
c
ω̄(x)[ẋ] dλ.

Pick a Gaussian coordinate system(Uo, ϕ) at o as in the proof ofProposition 3. Without
loss of generality we can assume thatx(c) ∈ Uo andx(d) ∈ Uo, for anyc ≤ d ≤ b. Denote
x(λ) by (x0(λ), xi(λ)) for anyλ ∈ [c, b]. Sincex is non-spacelike, we have

γij (x
0, xi)ẋiẋj ≤ (ẋ0)2. (11)

Moreover asx is future-pointing,ẋ0(λ) �= 0 on [c, b[, thusx0(λ) is strictly monotone on
[c, b[.

Arguing as in the proof ofProposition 3, we obtain∫ d

c

|ω̄(x)[ẋ]| dλ =
∫ d

c

|ω̄0ẋ
0 + ω̄iẋ

i| dλ =
∫ d

c

|ω̄0ẋ
0 + ¯̃ωi

γij ẋ
j| dλ ≤

∫ d

c

2Cẋ0 dλ.

Passing to the limit asd → b−, we conclude that|ω(x)[ẋ]| is integrable on [c, b]. As

lim
d→b−

∫ d

c

(ẏ + ω̄(x)[ẋ])dλ ∈ R,

we conclude that

lim
d→b−

y(d) − y(c) = lim
d→b−

∫ d

c

ẏ dλ ∈ R.

Let ȳ = limd→b−y(d). Clearly the point(o, ȳ) ∈ P is a future endpoint forz corresponding
to s = b. This fact yields the desired contradiction.

Now, letS be a Cauchy surface forΛ, thenS̃ = S × R is a Cauchy surface forP . Indeed
z(λ) meetsS̃ as many times asx(λ) meetsS, and in correspondence of the same value of
the parameter. SinceS is a Cauchy surface forΛ, x(λ) meetsS exactly once andz(λ) meets
S̃ exactly once. �

Remark 6. Let E+(p0) = J+(p0) − I+(p0), p0 ∈ P . It is well known (see[3, pp. 112,
184]) that if q ∈ E+(p0) there exists a null geodesic connectingp0 andq.

Lemma 7. Any globally hyperbolic Lorentzian manifoldΛ is causally simple, i.e. for every
compact subsetK ofΛ, J̇+(K) = E+(K), whereJ̇+(K) denotes the boundary ofJ+(K).

Proof. See[3, pp. 188, 207]. �

Lemma 8. Letp0 = (x0, y0) andp1 = (x1, y1) be two points inP . Let us denote byδ the
differencey1 − y0. Moreover letσ be a connecting future-oriented timelike curve. If∣∣∣∣δ +

∫
σ

ω̄

∣∣∣∣ <
∫
σ

ds

a
, (12)

thenp1 belongs to the chronological future ofp0.
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Proof. Letλ be the affine parameter ofσ such that ds/dλ = C = ∫
σ

ds andσ(λ)|λ=0 = x0.
Consider the curve onP

τ = τ(λ) =
(
σ(λ), y0 +

(
δ +

∫
σ

ω̄

)
λ −

∫ λ

0
ω̄[σ̇] dλ′

)
.

Clearlyτ(0) = p0, τ(1) = p1 and the following quantity is constant overτ

ẏ + ω̄[σ̇] = δ +
∫
σ

ω̄.

Moreover,

gkk(τ)[τ̇, τ̇] = C2 − a2
(
δ +

∫
σ

ω̄

)2

.

Thus, if (12)holds,τ is a timelike future-oriented curve that connectsp0 andp1. �

Proof of Theorem 4. Let R̄ = (h̄/ec)R. In Eq. (2)choosea < R̄. There is a connecting
timelike curveσ such that

sup
w∈Nx0,x1

∣∣∣∣
∫
w

ω̄ −
∫
σ

ω̄

∣∣∣∣ <
∫
σ

ds

a
. (13)

Consider its horizontal liftσ∗ having initial pointp0 = (x0, y0). Sinceσ∗ is timelike, its
final point p̃1 = (x1, ỹ1) = (x1, y0 − ∫

σ
ω̄) belongs toI+(p0). LetU be the open subset

of R containing all the valuesy1 such thatp1 = (x1, y1) is in the chronological future
of p0. Moreover letV be the connected component ofU containingỹ1. Assume thatV is
given by ]̄y1, ŷ1[. We are going to show that̄y1 > −∞ andŷ1 < +∞. By contradiction,
assume that for anyy1 > ỹ1 (y1 < ỹ1), it is p1 = (x1, y1) ∈ I+(p0). For the Avez–Seifert
theorem there is a timelike future-oriented geodesicα(λ) = (x(λ), y(λ)) that connectsp0
to p1. Hereλ is the affine parameter such thatα(0) = p0 andα(1) = p1. Then there exist
constantsCα andpα such thatg(x)[ẋ, ẋ] = C2

α andpα = −a2(ẏ + ω̄).
Integrating the last equation from 0 to 1 gives

pα = −a2
(
δ +

∫
x

ω̄

)
,

and, recalling(4)

gkk(α)[α̇, α̇] = C2
α − a2

(
δ +

∫
x

ω̄

)2

,

but we know (see the proof ofProposition 3) that supx∈Nx0,x1
| ∫

x
ω̄| = B < +∞. For

|δ| > L/a + B, we obtain thatα is spacelike and thus a contradiction.
Now we consider the points inP , p̄1 = (x1, ȳ1) andp̂1 = (x1, ŷ1). By Remark 6and

Lemma 7there exist two null geodesicsη̄ = (x̄, ȳ) andη̂ = (x̂, ŷ) connectingp0 to p̄1 and
p̂1, respectively. ByRemark 1we know that ifpη̄, pη̂ �= 0, then the non-spacelike curvesx̄
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andx̂ are actually timelike. Since both̄p1 andp̂1 are inİ+(p0), from Lemma 8 and(13),
we have

sup
w∈Nx0,x1

∣∣∣∣
∫
w

ω̄ −
∫
σ

ω̄

∣∣∣∣ <
∣∣∣∣ŷ1 − y0 +

∫
σ

ω̄

∣∣∣∣ ,
and analogously for̄y1. In particular∣∣∣∣

∫
x̂

ω̄ −
∫
σ

ω̄

∣∣∣∣ <
∣∣∣∣ŷ1 − y0 +

∫
σ

ω̄

∣∣∣∣ ,
and analogously with the hat replaced with a bar. Recalling thatỹ1 = y0−∫

σ
ω̄ andŷ1 > ỹ1

andȳ1 < ỹ1, we have

pη̂ = −a2
(
ŷ1 − y0 +

∫
x̂

ω̄

)
< 0,

and

pη̄ = −a2
(
ȳ1 − y0 +

∫
x̄

ω̄

)
> 0.

Therefore we have proved that there exist two timelike future-oriented connecting solutions
to Eq. (1)having charge-to-mass ratios

q

m
= −aec

h̄
,

and
q

m
= +aec

h̄
.

Sincea < R̄ is arbitrary we get the thesis. �

Theorem 9. Let (Λ, g) be a time-oriented Lorentzian manifold. Letω be a one-form(C2)
onΛ (an electromagnetic potential) andF = dω (the electromagnetic tensor field). Assume
that(Λ, g) is a globally hyperbolic manifold. Letx1 be an event in the chronological future
of x0 and suppose there is no null geodesic connectingx0 andx1, then there exist at least
two future-oriented timelike solutions toEq. (1)connectingx0 andx1, for any given value
of |q/m|. The two curves coincide only if they are geodesics.

Proof. Take an arbitrary timelike connecting curveσ and consider its horizontal liftσ∗.
Fromσ∗, the steps of the previous proof led to two null geodesics overP . Repeating those
steps here, it follows the existence of non-spacelike connecting curvesx̂ andx̄ satisfying
Eq. (3). By Remark 1, the constants of the motionpη̂ andpη̄ do not vanish, otherwise
the curvesx̂ and x̄ would be null geodesics connectingx0 andx1. By Remark 2, x̂ and
x̄, parameterized by proper time are timelike future-oriented solutions ofEq. (1) having
charge-to-mass ratioq/m satisfying∣∣∣ q

m

∣∣∣ = aec

h̄
.
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Let them coincide, and denote them byx = x̂ = x̄, then
∫
x̂

ds = ∫
x̄

ds = C. Moreover

pη̂ − pη̄ = −a2(ŷ1 − ȳ1) �= 0.

Therefore, subtracting the Lorentz force equations satisfied by bothx̄ andx̂, we get

(pη̂ − pη̄)F̂ (x)

[
dx

ds

]
= 0 ⇒ F̂ (x)

[
dx

ds

]
= 0. (14)

Substituting back this equation into the Lorentz force equation we see thatx is a geodesic.
Sincea is arbitrary we obtain the thesis. �

Corollary 10. Let (M, η) be the Minkowski space–time. Letω be a one-form onM and
F = dω an electromagnetic tensor field. Letx1 be an event in the chronological future of
x0, then there exist at least two future-oriented timelike solutions to(1) connectingx0 and
x1, for any given value of|q/m|. The two curves coincide only if they are geodesics.

Proof. It follows from the fact that, in Minkowski space–time, ifx1 ∈ I+(x0) there is no
null geodesic connectingx0 with x1. �

3. Conclusions

From a physical point of viewEq. (5) shows that for sufficiently weak fieldsF ,
Theorem 4answers affirmatively to the existence of connecting future-oriented timelike
solutions of the Lorentz force equation. Indeed, under the replacementω → kω, R scales
asR → R/k. Moreover the electron is the free particle with the maximum value of the
charge-to-mass ratio, and for sufficiently smallk, e/me < R.

In case the electromagnetic field is not weak, in order to haveq/m ≥ R, Eq. (5)shows
that the electromagnetic “energy”qω[dx/ds] should be of the same order of the rest energy
mc2. In this case quantum effects may become relevant and in particular the effect of pair
creation.Theorem 9shows that, if a pair is created at the eventx0, then at least one of
the two particles has the ability, with a suitable impulse, to reach the eventx1. Notice that
here we are neglecting the reciprocal electromagnetic interaction between the particles. In
a strong electromagnetic field this is, however, allowed.

We conclude that in a classical regime the problem of the existence of timelike connecting
solutions to the Lorentz force equations is solved. It remains open the problem of the
existence of solution in a strong fieldF , i.e. in a quantum mechanical regime. Under these
conditions we have given a partial result that can be useful when studying the consequences
of the pair creations effect.
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