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Abstract

We extend the classical Avez—Seifert theorem to trajectories of charged test particles with fixed
charge-to-mass ratio. In particular, given two eventandxs, with x; in the chronological future
of xp, we find an interval =] — R, R[ such that for any;/m € I there is a timelike connecting
solution of the Lorentz force equation. Moreover, under the assumption that there is no null geodesic
connectingrp andx, we prove that to any value ¢f/m| there correspond at least two connecting
timelike solutions which coincide only if they are geodesics.
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1. Introduction

Let A be a Lorentzian manifold endowed with the meprisaving signaturé+— — —),
and consider a point particle of rest massnd electric charge, moving in the electro-
magnetic fieldF .

The equation of motion is the so calledrentz force equatiofcf. [5])

dx\ g - dx
Dy (g) = m—@F(X) [a} , 1)
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wherex = x(s) is the world line of the particle,xyds is its four-velocity,D(dx/ds) is the
ciovariant derivative of d/ds alongx(s) associated to the Levi—Civita connectiongofind
F(x)[-]is the linear map o, A metrically equivalent tdF(x), that is

g, FO[w]] = F)[v, w]

foranyv, w € T A.

We state the following question: Do&s). (1)have at least one timelike future-oriented
solution connecting two given events andx; with x1 in the chronological future afo,
for any charge-to-mass ratigm?

It is well known (see for instandd]) that, if the manifoldA is globally hyperbolic, the
Avez—Seifert theorem gives a positive answer to the above question in the ca8di.e.
for thegeodesic equatign

In this paper we prove that, for an exact electromagnetic field on a globally hyperbolic
manifold A, the answer is positive for any ratigm in a suitable neighborhood of O R.

Our strategy is to derive the solutions to the Lorentz force equations as projections of
geodesics of a higher dimensional manifold. In this way we are able to use the techniques
already developed for the geodesic equation.

This approach, has been already used for studying the Lorentz force equation in General
Relativity (see for instancpl]). However, a result a la Avez and Seifert for the Lorentz
force equation was still lacking.

In the preprin{2] it was proved that in a globally hyperbolic space—tiEe (1)admits
a connecting solution with a charge-to-mass ratio different from zero. That ratio, however
was not fixed since the beginning.

So assume that is an exact two-form and let be a potential one-form foF. Let us
consider a trivial bundl®® = A x R, 7 : P — A, with the structure grouffy : b € T3,

p = (x,y), p) =pb= (x, y + b), andw the connection one-form oA:

cb:i(dy+_%a)).

Herey is a dimensionless coordinate on the fibre, (e > 0) is the electron charge and
h = h/2m, with h the Planck constant. Henceforth we will denotezbgnd F, respectively
the one-form(e/hc)w and the two-forme/hc) F. Let us endowP with the Kaluza—Klein
metric

¢4 =g+ d?a?, e
or equivalently, using the notatianfor the points inP and the identification = (x, y) €
A xR

S w, w] = ¢*x, [, u), (v, )] = gW)[v, v] — du + d(x)[v])?

for everyw = (v, u) € T, A x R. The positive constant has the dimension of a length
and has been introduced for dimensional consistency of defir{Rjpoin the compactified

five-dimensional Kaluza—Klein theory the fibre is isomorphicstoanda represents the
radius of the fifth dimension.
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Let us consider the Lagrangian éh
L=LzZw):PxTP—>R, L(z,w)= %gkk(z)[w, w].

Fix two pointspg andp1 € P. The geodesics oA, with respect to the Kaluza—Klein metric,
connecting the pointgg and p1 are the critical points of the action functional

11
S=S8() = /0 Egkk(za»[z(k),z(x)] dx,

defined on a suitable space of sufficiently regular curve® gparameterized from 0 to 1,
with fixed extreme pointpg andp;. Herez denotes the derivative @f= z(1) with respect
toA.
Assume that (1) = (x(1), y(1)) is a critical point forS. Since the Lagrangiah is
independent of, the following quantityp, is conserved
daL .- .
pe= oo = —a* G+ aW[).
y
Moreover taking variations only with respect to the variablere obtain the following
equation forx = x(1)

Dyi = p. F([A]. 3)

From(3), it follows thatg(x)[x, x] is constant along. Assume that is non-spacelike (with
respect tqg) and defineC > 0 such that

g, 1] = C%

Sincez is a geodesic, alsg®(z)[z, 7] is conserved and

2
@l =C? - 3. (4)
Thus the geodesicon P is timelike iff
2
p
c?> ==,
> az

Remark 1. Of course, ifz is timelike then alsa is timelike, and ifz is non-spacelike then
alsox is non-spacelike. Moreover, ifis a null geodesic, the@i? = p?/a? andx is timelike

iff p, # 0.
Remark 2. Now assume that is timelike. The proper time far is defined by
ds = Cdx,

hence if we parameterize with respect to proper time, frorf8), we get the following
equation forx = x(s)

D dx _ Pz dx _pzel:_)dx
: a>—6 D] cre™™™ e
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Therefore, a comparison witfl) allows us to conclude that, if we are able to find a
future-oriented null geodesic for the Kaluza—Klein metric, starting from a peint=
(x0, y0), arriving to a pointps = (x1, y1) and having constarnp, # 0, then, recalling
Remark 1 we can state that there exists a future-oriented timelike solutii),toonnect-
ing xo andx; and having charge-to-mass ratio

ec aec
q pz__:l:

m_ Ck R’
with the plus sign ifp, > 0 and the minus sign if, < O.

2. Statement and proof of the main theorem

In this section we state and prove our main result. In the sequel we will make large use
of the notations of the bod8], which is our reference also for the necessary background
on causal techniques.

Let Ty,.x, and Ny, », be the sets, respectively, of all tled, future-pointing timelike
connecting curves and of all ti&, future-pointing non-spacelike connecting curves. With
connecting curvave mean a map from an interval §, 6] C R to A such thatc(a) = xo
andx(b) = x1 and any other map such thatw = x o A with 1 a C! function from an
interval [c, d] to the interval |, b], having positive derivative.

Define

R= sup ¢ J. ds ) (5)
xe'ﬁro,xl SUQUENXO,)Cl'fww - fxwl

Notice thatR does not depend on the gauge chosen, that is, it is invariant under the replace-
mentw —  + n, wheren is an exact one-form.

We recall that a globally hyperbolic manifold is a Lorentzian manifold containing a
subset (a so callgdauchy surfacewhich is intersected by every inextendible non-spacelike
smooth curve precisely once.

Proposition 3. Let (A, g) be a time-orientedglobally hyperboli¢ Lorentzian manifold
let xo be a point onA andx1 € A a pointin the chronological future ofy. Then

R > 0.

Proof. Lety be a connecting future-directed timelike geodesic whose length is

For the Avez—Seifert theorem, such a geodesic exists. Choose a gauge sgfg;lmthao,

and define
M = sup /w‘

x€Ng.xq
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We are going to prove that is finite. Let{x,},cn C Ny,.x, b€ a sequence such that

/ a)‘—>M.
Xn

Since(A, g) is globally hyperbolic, the saf(xg, x1) of continuous non-spacelike curves
connectingrg andx1 is compac{3]. We recall that the topology @f(xg, x1) is defined by
saying that a neighborhood gfe C(xo, x1) consists of all the curves i@(xg, x1) whose
points inA lie in a neighborhood of the points ofy € A. We can extract a subsequence,
denoted again witlx, }, such thaty,, converges to a continuous non-spacelike cures

A, connectingeg andxs in the topology onC(xg, x1). Sincex is compact we can cover it
with m charts(Uy, ¢y) of the form

b U — A* CR* with A =]0, ], (6)
where the coordinate{scjj } are Gaussian normal coordinates
guv dxt dx¥ = (d)c,?)2 - yu'k(x,?, xb) dxt, dx,{, @)

and dg, is future-directed (the existence of a neighborhoogpof M having Gaussian
coordinates follows by Lemma 4.5.2 [#f]). Hereyjj is a positive definite metric on the
spacelike hypersurfaces of constaﬁ.t Moreover we can assume that € Uy, x1 € Uy,
andU; N U, = ¢, foranyk # i — 1,i,i + 1. Let us introduce iy, the inverse ofjj,
y,?l”, and the functiom) = yk*l” wik, Wherewj denote the components @fin Uy. In Uy
we consider the continuous functiomng; and,/cb;;y.jkcb,{. Sincex is compact, we can find

a neighborhoodV C |J;;,, Uk of x, and a constant, such that for an, |wox| < C

and,/nb;;yljk&),{ < C. Sincex, converges ta there is an integer numbe¥ such that, for
n>N,x, eW.

Moreover, for any,, n > N, the strong causality condition ofiallows us to introduce
a partition{[Ar—1, Axl}1<k<m, 2o = 0 < A1 < .-+ < Ay, = 1, Of the interval [01], such
thatx, ([Ax—1, A¢]) C Ur N W. Now we compute

1 m Ak
[ o = [ etmtile =Y [ ot
Xn 0 k=1 Ak—1

m A o '
= Z/ |wokx,, + a)ikxmdk
k=17 M1

" rhk 0 . .
= Z/ |wor X, + cb;{)ﬁjk)'cﬂd)\.
k=1 Y M1

Using the Schwarz inequality we have

| ik | < \/ (@ yik@D) (5 vsikty) < Cyf & v < CA, (8)
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where in the last step we have used the fact thas non-spacelike and future-directed.
From(8) we get

/a)
Xn

Passing to the limit om, we conclude thaM is finite. Finally, recalling the definition of
R, we get

m A
< 2/ 2¢i%dr < 2Cmb < +o0.
k=17 -1

2L

Now we are ready to state our main result.

Theorem 4. Let(A, g) be a time-oriented Lorentzian manifold. lebe a one-forn{C?)
on A (an electromagnetic potentjednd F' = dw (the electromagnetic tensor figldAssume
that (A, g) is a globally hyperbolic manifold. Let; be an event in the chronological future
of xo and letR be defined as if5), then there exists at least one future-oriented timelike
solution to(1) connectingrg andx1, for any charge-to-mass ratio satisfying

£ ®

Before provingTheorem 4ve need some lemmas. The first is the following result, about
the causal structure of the manifoR] which is contained irfi2]. We report the proof for
the reader convenience.

Lemmab. The manifold? = A xR endowed with the metr{@)is a time-oriented globally
hyperbolic Lorentzian manifold

Proof. Let V be a timelike vector field om giving a time orientation. Clearly the hori-
zontal lift of V, (V, —@[V]), gives a time-orientation t& (henceforth we will consideP
time-oriented by means of such a vector field).

Let us prove that it :Ja,b[— P (—o0 < a < b < +00) is an inextendible smooth
future-pointing non-spacelike curve, thed.) = w(z(1)) is an inextendible smooth future-
pointing non-spacelike curve. By contradictiondéte a future endpoint forcorresponding
to s = b. We are going to prove that has a future endpoint, 7(u) = o. Sincez is
non-spacelike we deduce that

aly + o()[i]| < v g@)[x, x],
and, integrating frona > a tod < b, we get
d d
a/ |y 4+ w(x)[x]| dr 5/ Ve [x, x]da. (20)

Now consider the Lorentzian distance functidron A associated to the metric Since
A is globally hyperbolic and: is non-spacelike, the right-hand side (D) is less than
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d(x(c), x(d)) < +o0. As x has future endpoiné corresponding ta. = b, d(z(c),0) <
+00. So there exists the limit a8 — b~ of the right-hand side of10). Therefore the
left-hand side 0f10) has finite limit asd — 5. Now consider the terrﬁcd @(x)[x] dA.
Pick a Gaussian coordinate systéth,, ¢) ato as in the proof oProposition 3 Without
loss of generality we can assume thét) € U, andx(d) € U,, for anyc < d < b. Denote
x(A) by (x°(1), x'(1)) for anyx € [c, b]. Sincex is non-spacelike, we have

7 (%, xhi'xd < (19)2, (11)
Moreover as is future-pointing,x°(1) # 0 on [c, b[, thusx®()) is strictly monotone on

[c, bl
Arguing as in the proof oProposition 3we obtain

d d ) d . ) d
/ |zu(x)[5c]|d,\:/ |5)0x0+5),~jc‘|dA:/ |@0x°+dy.,-xf|dxg/ 2Ci0da.
c C

C C
Passing to the limit a8 — b~, we conclude thafw (x)[ ]| is integrable ond, b]. As
d
lim / (y + @(x)[x]) dr € R,
d—b~ J¢
we conclude that
d
lim y(d) — y(c) = lim / ydr e R.
d—b~ d—b~ J¢
Lety = lim,_,,- y(d). Clearly the pointo, y) € P is a future endpoint for corresponding
tos = b. This fact yields the desired contradiction.
Now, letS be a Cauchy surface fot, thenS = § x R is a Cauchy surface fa?. Indeed
z(A) meetsS as many times as(1) meetsS, and in correspondence of the same value of
the parameter. Sincgis a Cauchy surface fot, x(1) meetsS exactly once and(,) meets

S exactly once. 0

Remark 6. Let ET(pg) = JT(po) — I (po), po € P. Itis well known (sed3, pp. 112,
184)) that if ¢ € E*(po) there exists a null geodesic connectjmgandg.

Lemma?. Any globally hyperbolic Lorentzian manifoltlis causally simplg.e. for every
compact subsek of A, J*(K) = ET(K), whereJ " (K) denotes the boundary dft (K).

Proof. See[3, pp. 188, 207] O

Lemma8. Letpg = (xo, yo) and p1 = (x1, y1) be two points inP. Let us denote by the
differencey; — yo. Moreover leto be a connecting future-oriented timelike curve. If

d
‘3+/5) Jo *

a
then p; belongs to the chronological future pf.

<

12)
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Proof. Leta be the affine parameter efsuch thatd/dr = C = [ dsando(X) =0 = xo.
Consider the curve oR

A
T=1(}) = (0()»), yo + <8 + / cb) A —/ @[o] dA’) )
o 0

Clearly t(0) = po, (1) = p1 and the following quantity is constant over

y+5)[¢]=5+f@.

o

Moreover,
2
o[t 7] = C? — d? (3+ f a)) .
o
Thus, if(12) holds,z is a timelike future-oriented curve that conneggsand p1. O

Proof of Theorem 4. Let R = (h/e0R. In Eq. (2)choosez < R. There is a connecting
timelike curves such that

Joo= Lo

Consider its horizontal lifte* having initial pointpg = (xo, yo). Sinces™ is timelike, its
final point p1 = (x1, y1) = (x1, yo — J, @) belongs tol* (po). Let U be the open subset
of R containing all the values; such thatps = (x1, y1) is in the chronological future
of po. Moreover letV be the connected component@fcontainingy;. Assume thav is
given by Jy1, y1[. We are going to show thaty > —oo andy; < +oco. By contradiction,
assume that for any, > y1 (y1 < y1), itis p1 = (x1, y1) € I (po). For the Avez—Seifert
theorem there is a timelike future-oriented geodegic = (x(1), y(1)) that connectgg
to p1. Herea is the affine parameter such thaD) = pg anda(l) = p1. Then there exist
constantg”, andp,, such thatg(x)[x, x] = Cg andpy, = —ad?(y + ®).
Integrating the last equation from 0 to 1 gives

Pa=—az(5+/5)),

and, recalling4)
2
@l i = C2 - a? (a +f a)) ,

but we know (see the proof d?roposition 3 that SUQENXO,XJ fX&)| = B < +o0. For
|8] > L/a + B, we obtain thatr is spacelike and thus a contradiction.

Now we consider the points iR, p1 = (x1, y1) andp1 = (x1, y1). By Remark 6and
Lemma 7there exist two null geodesigs= (x, y) andi = (X, ¥) connectingpg to p; and
P1, respectively. B\Remark Iwe know that ifp;, p; # 0, then the non-spacelike curves

J, ds

a

sup
we-/\/xo,xl

<

(13)
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andx are actually timelike. Since botpy and p; are inf*(po), from Lemma 8 and13),

we have
[a-[a|<-n+[a
w (e (e

and analogously foy1. In particular

f@—/a) 5}1—yo+/&)
X o o

and analogously with the hat replaced with a bar. Recallingithat yo— [ @ andj1 > 1
andy1 < y1, we have

pf;:—az(&1—yo+/&)> <0,
X

and

pﬁ:—a2<§11—yo+/:5)> > 0.
X

Therefore we have proved that there exist two timelike future-oriented connecting solutions
to Eqg. (1)having charge-to-mass ratios

sup
weNxg.x;

<

)

<

s

g  aec
m_  h
and
4 _ 2
m + h
Sincea < R is arbitrary we get the thesis. O

Theorem 9. Let(A, g) be a time-oriented Lorentzian manifold. lebe a one-forn{C?)
on A (an electromagnetic potentjgdnd F' = dw (the electromagnetic tensor figldAssume
that (A, g) is a globally hyperbolic manifold. Let; be an event in the chronological future
of xg and suppose there is no null geodesic connectignd x1, then there exist at least
two future-oriented timelike solutions Exj. (1) connectingcg andx1, for any given value
of |g/m|. The two curves coincide only if they are geodesics

Proof. Take an arbitrary timelike connecting curweand consider its horizontal lit*.
Fromo*, the steps of the previous proof led to two null geodesics #vétepeating those
steps here, it follows the existence of non-spacelike connecting ciireedx satisfying
Eqg. (3) By Remark 1 the constants of the motiop; and p; do not vanish, otherwise
the curvest andx would be null geodesics connecting andx1. By Remark 2 x and
X, parameterized by proper time are timelike future-oriented solutiofi&jo{1) having
charge-to-mass ratig/ m satisfying

‘q‘_aec
m! =~ R
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Let them coincide, and denote them.by= & = X, then [, ds = /. ds = C. Moreover

P — pi = —a*(31— 1) # 0.

Therefore, subtracting the Lorentz force equations satisfied byxoetidx, we get
N dx A dx
(py — P F(x) [a] =0= F(x) |:$i| =0. (14)

Substituting back this equation into the Lorentz force equation we seg ihatgeodesic.
Sincea is arbitrary we obtain the thesis. O

Corollary 10. Let (M, n) be the Minkowski space—time. Letbe a one-form o and

F = dw an electromagnetic tensor field. Let be an event in the chronological future of
xo, then there exist at least two future-oriented timelike solutior{d¢ Yaonnectingrg and
x1, for any given value offy/m|. The two curves coincide only if they are geodesics

Proof. It follows from the fact that, in Minkowski space—time xif e It (xg) there is no
null geodesic connectingy with x1. O

3. Conclusions

From a physical point of vieweq. (5) shows that for sufficiently weak fieldg,
Theorem 4answers affirmatively to the existence of connecting future-oriented timelike
solutions of the Lorentz force equation. Indeed, under the replacementkw, R scales
asR — R/k. Moreover the electron is the free particle with the maximum value of the
charge-to-mass ratio, and for sufficiently smialé/m,. < R.

In case the electromagnetic field is not weak, in order to gwe > R, Eq. (5)shows
that the electromagnetic “energy[dx/ds] should be of the same order of the rest energy
mc. In this case quantum effects may become relevant and in particular the effect of pair
creation.Theorem 9shows that, if a pair is created at the evegtthen at least one of
the two particles has the ability, with a suitable impulse, to reach the eyeNbtice that
here we are neglecting the reciprocal electromagnetic interaction between the particles. In
a strong electromagnetic field this is, however, allowed.

We conclude thatin a classical regime the problem of the existence of timelike connecting
solutions to the Lorentz force equations is solved. It remains open the problem of the
existence of solution in a strong field i.e. in a quantum mechanical regime. Under these
conditions we have given a partial result that can be useful when studying the consequences
of the pair creations effect.
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